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An upper estimate is found for the smallest number of sets of assigned experimental frequencies 
(corresponding to different intensities of external magnetic field) necessary for a unique solution 
of the general spin (spin number 1/2) inverse secular problem. The 'proof of uniqueness can 
in principle be used as a direct method of calculation of NMR parameters. 

The calculation of chemical shifts and spin-spin coupling constants (NMR parameters) for a ge
neral system of nuclei from assigned experimental frequencies leads, in general, to a system 
of nonlinear equations. The set of all solutions of this system corresponding to a set of resonance 
frequencies obtained by measurement at a single external magnetic field intensity contains general
ly several real , i.e. physically plausible solutions 1 ,2. Hence follows the necessity in practical 
calculations to apply additional information (equations) enabling one to select from all real 
solutions the one that is physically correct. In our previous work3

,4, we considered as additional 
information sets of resonance frequencies obtained at other, generally different, intensities of ex
ternal magnetic field, and for special cases of systems ABC and AA'BB' we proved that their 
measurement at two intensities is a sufficient condition for the uniqueness of the solved problem. 

The present paper brings (except for certain "singular" cases discussed in a sub
sequent section) an explicit calculation of chemical shifts and spin-spin coupling 
constants for a general system of n ~ 4 magnetically nonequivalent nuclei (spin 
number 1/2) from a set of assigned resonance frequencies obtained by measurement 
at um - t] + 1 different external magnetic field intensities. * 

RESULTS 

The computation of NMR parameters for the above-mentioned nuclear systems 
from sets of resonance frequencies corresponding to T values of external magnetic 
field intensities consists in solving the following system of algebraic equations 3

: 

(1) 

The symbol [xl is used to denote the largest integer smaller or equal to x. 
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(l = 0,1, ... , n; rt.1 = 1,2, ... , e), p = (D, t = 1,2, ... , T), where HI(k,) denotes sub
matrices of matrix H of the spin Hamiltonian. Elements of the matrix H are, in the 
basis of spin product functions, given by5.6 

n n-1 n 

{HI(kt)h.x = tkt L vpxp + iLL JpqXpXq, (2) 
p;l p;I q ; p + I 

{
H (k )} = / 1- J pq for x and y differing just in 2 coordinates, 

I t x. Y " ° in other cases. 

For the same 1 the row index x and, also independently the column index yare set 
equal in turn to all elements of Dn•1 which is the set of all n-dimensional vectors 
having 1 coordinates equal to + 1 and n - 1 coordinates equal to -1; E I.P,( kt) 
denotes energy levels defined uniquely by the corresponding experimental frequencies, 
obtained by measurement in external magnetic fields characterized3 by the coeffi
cients k,. 

In solving the given problem, the following principle is utilized: Equations corres
ponding only to submatrices Ho, HI, H2 , HII _ 2 , Hn - t and Hn are selected from 
the system (1) ' and 'an integer T is determined for which this restricted system has 
already a unique solution (which is obviously also a solution of the original system). 
The NMR parameters are determined in two steps: first the chemical shifts Vi are 
found (c/. theorem 1) and then the coupling constants Jij either with the aid of 
theorem 2 (for n = 4) or theorem 3 (for n > 4). 

Theorem 1 

Let n ~ 4; let us consider real nonzero numbers kI , k2 , ••• , kT' where T = [nI2] + 1, 
and numbers E"p,(k,), where P, = 1,2, . .. , m; 1 = 0,1,2, ... , n. Let the following 
conditions be fulfilled: a) k~ =1= k; (I' =1= s), b) the system (1) has for kt and E1.P,(kt) 
a solution (v j , JiJ Then there exists (disregarding arbitrary permutations of indexes 
1,2, .. . , n) a single n-tuple (V I ,V2' ... , vn) and numbers J jj so that the solution is 
(Vi' Jij) ' (According to ref. 3 , this theorem applies also to the case n = 3.) 

Theorem 2 

Let n = 4; let us consider nonzero numbers kt , k2 and k3 (i.e. T = 3) and numbers 
EI.p,(kt), where PI = 1,2 ... (1); 1 = 0,1, ... 4; t = 1,2,3, and let the following 
conditions be fulfilled: a) k~ =1= k; (I' =1= s), b) the system (1) for n = 4 has a solution 
(VI' Vz, ... , V4 , J 12 , ••• , J34) for which Vr =1= VS' Then the system (1) has a single solu-
tion (VI' ... , V 4, J 12, ..• , J 34) (again disregarding arbitrary permutations of indexes 
1-4). 
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Theorem 3 

Let n > 4 be an integer; let us consider nonzero numbers k 1", " k T , where T = 

= [H~) - t] + 1, and numbers EI,fJ,(kt), where f31 = 1,2, " " G); 1 = 0,1, "" n; 
t = 1,2, .. " T; and let the following conditions apply: a) k; =1= k; (r =1= s), b) 
the system (1) has a solution (Vi' Jij) for which Vi + Vj =1= Vi' + Vi' ((i,j) =1= (i',/), 
1 ~ i ~ j ~ n, 1 ~ i' ~ j' ~ n), Then the system (1) has a single solution (Vi' Jij) 
(again disregarding permutations of indexes), 

PROOFS 

Proof of theorem 1: An algebraic equation of n-th degree is found the roots 
of which are VI' "" Vn' We define 

n 

G1(kt) = H1(k t) + (!kt L Vj - i L Jij) ,en) , 
j=l l~i<j~n 

Gn - 1(q = -Hn - 1(k t) + (lk t L Vj + i L Jij) I(n) , 
j=l l~i<j~n 

where ,en) denotes an n x n unit matrix, The system (1) implies that the matrix G1(k t) has 
eigenvalues Fl,fJ/kt) = E1,fJ.(kt) - EO,l(kt), f31 = 1,2, .. " n, t = 1,2, .. " [nI2] + 1, 
and the matrix Gn-l(kt) has eigenvalues Fn- 1 ,fJn_.(kt) = - En-1,fJn_.(kt) + Elkt), 
f3n-l = 1,2, .. " nand t = 1,2, .. " [nI2] + 1. From this we obtain the following 
system of equations: 

(3) 
where 

n 

MI,IX' = L (FI,fJ,(kt))'" (l = 1, n - 1; al = 1,2, "" n), 
fJ,=l 

The matrices G1(k t ) and Gn-l(kr) can be written uniquely in the form 

(4) 

where the matrices Rand S do not depend on kt, On introducing Eqs (4) into (3) 
we obtain the system of equations 

a~o (:1) k~l-a Tr(RIX1-aS'7) = Ml,lX/kt), (5) 

anil (an-I) ( -1)« k~"-·-a Tr (Ran-.-as) = Mn-1,lXn_, (kt) , (6) 
a=O (j 
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Summing these equations for an equal index t and (Xl = (Xn-l one obtains 

2 I ((X) k"D-a Tr (Ra-asa) = M I," kt) + M n-l,1% (k,), 
a=O U 

CT even 

(7) 

where (X = 1,2, ... , nand t = 1,2, ... , [nI2] + 1. From the system (7) it follows that 

Tr(R") = P" (8) 

for 

where the row index t = 1,2, ... , [aI2] + 1 and (X = 1,2, ... , n. From the assumption 
a) in theorem 1 it follows that the determinant in the denominator is nonzero. By 
calculating the matrix R we find easily that 

" Tr(Ra) = I vj. (9) 
j=l 

On combining Eqs (8) and (9) we obtain a system of n equations for the che
mical shifts VI' ... , Vn• The theory of symmetrical polynomials6 implies that this 
system has a single solution (VI' ... , vn) disregarding permutations of indexes; Vj is 
taken to mean roots of the algebraic equation v" + Cl V"-l + C1V"-1 + ... + C n = 0, 
where C l = - PI and Cy = - (py + CIPy_ l + '" + Cy-1Pl)ly, y = 2,3, ... , n. 
The proof is accomplished. 

Proof of theorem 2: Theorem 1 ensures that the system (1) for n = 4 is uniquely 
solvable with respect to the chemical shifts (VI' Vl, V3 , V4)' If these are introduced 
into the system (1) one obtains for the coupling constants J 12 , J 13 , ... , J 34 a system 
of equations to which, as we shall show now, a unique solution exists. From Eqs (5) 
and (6) for n = 4 it follows after a simple rearrangement: 

Tr(RaS) = Ta, U = 0,1,2,3, (10) 

where 

T2 = (M1,3(kl) - M 3•3(k l ) - M l ,3(k2) + M3•3(k2))/6(ki - k~) and 

T3 = «Ml .4(k l ) - M3 •4(k l )) k2 - (Ml,4(k2) - M 3•4(k2)) k 1)/8k l kz(ki - kn· 
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With regard to the form of the matrices Rand S the system (10) can be rewritten 
in the form 

where 
r-I 4 

J r = L Jgr + L Jrp r = 1,2,3,4. (11) 
p~l p~r+l 

It follows from the system (lOa) that J 1 = - 2L\- I IT"" v~, v;, v~1 , ... , J4 = 

= - 2L\- 1
1 vf, v~, v~, T",I (ex = 0,1,2,3), where 

Hence, Eq. (11) represents four independent equations for the coupling constants J ij; 

other ones are obtained with the aid of submatrices Hz(k t), which can be uniquely 
expressed as Hz(kt) = ktC + O. The matrices C and 0 are independent of kt and 
besides fulfil the following lemma (for proof see Appendix): 

Lemma 1: Let rand s be nonnegative integers, r odd. Then Tr( COS) = ° . 
Starting from the system (1) for n = 4, 1 = 2, ex l = 1,3,5, we obtain with the use 

of lemma 1 the following system of equations: 

where 

6 6 6 

Wo = L E2.ik l)' Y(kt) = L (Ez,iktW, Z(k t) = L (E2,iktW· 
j~1 j~1 j~1 

It follows from (12) that 

Tr(C2eO) = w., e = 0,1,2, 

. (k~ - ki) + Z(k3) (ki - km/5(ki - kD (ki - kD (k~ - kD· Further we set 

)11 = (-VI - V2 + V3 + v4)/2, f12 = (-VI + V2 - V3 + v4)/2, 

f13 = (-VI + V2 + V3 - v4)/2, 
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11 = !(J12 - J13 - J 14 - J 13 - J 24 + J 34) , 

11 = !(-JI2 + J13 - J 14 - J 23 + J 24 - J 34) , 

13 = t( -J12 - J13 + J 14 + J 23 - J 24 - J 34)· 

Moravek, Spirko : 

(15) 

With regard to the form of matrices C and 0, the system (13) can be rewritten in the 
form 

The determinant of this system, D = (,ui - Il~) (,ui - ,uD (,u~ - ,uD, is according 
to our assumption different from zero, hence 11 = (l/2D)IW"" ,u~, ,u~I, 12 = 
= (1/2D)I,u~, W", ,u;I, and 13 = (1/2D)III~, ,u~, W"I (0: = 0,1,2). On combining Eqs 
(11) and (15) we obtain the following system of linear equations for the coupling 
constants Jij: 

J 12 + J13 + J 14 + 0 + 0 + 0 11 

. J 12 + 0 + 0 + J 23 + J 24 + 0 12 

o + J13 + 0 + J 23 + 0 + J 34 = 13 

o + 0 + J 14 + 0 + J 24 + J 34 = 14 

-J12 + J13 - J 14 - J 23 + J 24 - J 34 = 412 

-J12 - J13 + J 14 + J23 - J 24 - J 34 = 413 

J 12 = t(11 + 12) + 11 - A, J 34 = - ·HJ1 + 12) + 11 + 3A, 

J13 = t(11 + J3) + 12 - A, J 24 = -t(J l + 13) + 12 + 3A, 

J 14 = t(J l + 14) + 13 - A, J 23 = - t(11 + J4 ) + 13 + 3A, 

where A = - (11 + 12 + 13)' The proof of theorem 2 is accomplished. 

Proof of theorem 3: For n > 4 we have [t(~) - -!-] + 1 > [n/2] + 1 so that the 
assumptions of theorem 3 involve those of theorem 1. Hence, in the sense of theorem 
1 a unique n-tuple of chemical shifts (VI' V2 , ..• , vn) exists (disregarding permutations 
of indexes) and so for a complete proof only the determination of the coupling 
constants Ji] is necessary. To this purpose we use the submatrices H 2 (k t ) and Hn - 2(k t), 
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which can be uniquely expressed as 

(16), (17) 

where the matrices U and V are independent of k t • On introducing these equations 
into (1) we obtain for I = 2 and n - 2 the system 

(18) 

(19) 

where ex = 1,2, .. . , (~), and with p = m 

From this we simply obtain 

(20) 
for 

where CJ. = 1,2, ... , m and t = 1,2, .. . , [(ex - 1)/2]. From the assumption a) 
of theorem 3 it follows that the determinant in the denominator is nonzero. With 
regard to the form of matrices H2(k t) and HII - 2(k t ) it follows from (20) that 

± (~(X)t-l lex) = Q", (21) 
XED" ,n(x)=2 

where 
(22), (23) 

The determinant of the system (21) is different from zero if and only if (x E Dn, 
y E D", X =1= y, n(x) = n(y) = 2) => ~(x) =1= ~(y), which is identical with the assump-
tion b) of theorem 3. Hence ' 

l(xk) = 1(~(Xl))''' ... , (~(Xk-l))'" Q", (~(Xk+l))'" .. . , (~((xt)YI: 

: 1(~(Xl))'" (~(X2))'" ... , (~(xt))"1 , 
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where t = (~), the row index C( = 1,2, ... , t and Xl' x 2 , ... , x t is an arbitrary ordering 
of the set {x ED" I n(x) = 2}. To complete the proof, it is sufficient to show that 
Eqs (23) are uniquely solvable with respect to J ij' Rows of the matrix of this system 
are indexed by vectors x(x ED", n(x) = 2), each of them being uniquely defined 
by a pair of such indexes i', j' for which the corresponding coordinates of the vector X 

are equal to + 1. Columns of this matrix correspond to pairs (i, j) in J ij' We now 
arrange the rows and columns of the matrix of the system (23) arbitrarily so that 
the sequence of the pairs (i, j) becomes the same as the sequence ofthe pairs (i', j'). 
We denote this new matrix as A, the vector of the solution J ij as j, and the vector 

of the right sides )(x) as i and rewrite the system (23) in the form 

(23 a) 

The following auxiliary assertion implies that the latter system is uniquely solvable 
and also implies the form of the solution, which completes the proof. 

Lemma 2: Let n > 4. Then A is regular and 

A-I = etA + [31 + y', (24) 

where 1 denotes matrix of the type G) x m consisting only of ullItles , , unit 
matrix of the same type and et = 1/8(n - 4), f3 = (5 - n) (11 - 8)/8(n - 4) 
(n2 - 9n + 16), Y = (n - 6)/4(n - 4). (For a proof of this lemma see Appendix.) 

'APPENDIX 

Proof of lemma 1: Without loss of generality, it can be assumed that the rows 
and columns of matrices C and 0 are ordered according to the following scheme: 

(-1,-1, 1,1), (-1, 1,-1, 1), (-1,1, 1,-1), 

(1,-1,-1,1), (1,-1,1,-1), (1,1,-1,-1). 

It can be easily verified that in such a case C = -i6C~ and 0 = '60'6' where i6 
denotes a 6 x 6 'matrix whose elements on the subordinate diagonal are equal to 1 

and others are zero. (The transformation '~X': converts the 6 x 6 matrix X into X' 
differing from X by an inverse order of rows and columns.) Since (~y is a unit 6 x 6 
matrix and r is odd, we obtain 

whence follows Tr( CDS) = O. The proof is accomplished. 
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Proof of lemma 2: The columns of the matrix A are numbered with ordered pairs 
(i, j), 1 ~ i < j ~ n. To simplify the proof, we shall consider (i, j) as a two-element 
subset {i, j} of the set {1,2, ... , n}, where i =!= j; this allows us to take advantage 
of the symmetry {i,j} = {j, i}. In a similar way, we shall number the rows of the 
matrix A with all two-element subsets {i',j/} of the set {1,2, ... , n}. Thus, A({i',j'} , 
{i, j}) denotes an element of the row {i', j'} and column {i, j} of the matrix A (analog
ously also for other matrices occurring below). It is apparent from the form of the 
system (23) that A({i/,j'}, {i,j}) = X;Xj' where the vector XED" has i'th and j'th 
components equal to 1. Now the elements of the matrices A, 1A and A2 will be 
determined. 

Elements of the matrix A: a) If {i',j'} = {i,j}, then A({i,j}, {i,j}) = X;Xj = 

= (+ 1)( + 1) = 1. b) If{i', j'} n {i, j} = 0, then A({i', j'}, {i,j}) = X;Xj = (-1) . 
. (-1) = 1. c) If {i',j'} n {i,j} is a one-element set then A({i',j'}, {i,j}) = X;Xj = 
= (+ 1) (-1) or (-1) (+ 1) = -1. Hence, A is symmetrical. 

Elements of the matrix 1A: (1A) ({t,n, {i,j}) = L 1A({r, s}, {i,j}) = 
{r,s} 

= - (("22) + 1)( + 1) + ((~) - e22) - 1 (-1) = 2 + 2 ("22) - m, where the sum 
is taken over all {r, s} c {1,2, ... , n}, r =!= s. Hence, 1A = (2 + 2("22) - m1. 

Elements of the matrix A2: Since the matrix A is symmetrical, A2 = itA and hence 

(A2) ({t,n, {i,j}) = (iA) ({t,j'}, {i,j}) = L X; , Xj'X;Xj' 
xeD" ,"(x) = 2 

We shall distinguish three cases: a) {i',j'} = {i,j}, b) {i',j /} n {i,j} = 0, c) 
o =!= {i',j'} n {i,j} =!= {i,j} . In case (a) we obtain AZC{t,j'}, {i,j}) = L 1 = 

xeD",n(x)= 2 

= m. In case (b) we have A2({i ',j'}, {i,j}) = L Xi'Xj'X;Xj = 4(n - 4) (-1) + 
xeD","(x) = 2 

+ (m - 4 (n - 4) ( + 1) = m - 8 (n - 4). In case c) we set {k, I} = 

= {i ', j', i, j} - {i' , j'} n {i, j}. Then A2({i', j'}, {i, j}) = L x;,xj'x;Xj = 
xeD","(x) = 2 

L XkX / = 2(n - 2)( -1) + (m - 2(n - 2))( +1) = m - 4(n - 2). 
xeD","(x)= 2 

To accomplish the proof, it remains to show the existence of numbers ex, f3 and y 
satisfying the matrix equation (exA + f31 + yl) A = I, i.e. exA2 + f3(1A) + yA = I. 
It follows from the preceding that the latter equation is equivalent to the following 
system of equations for ex, f3 and y: 

G) ex + (2 + 2 (n ~ 2)_ G)) f3 + y = 1, 

(G) - 8(n - 4)) ex +(2 + 2(n ~ 2) -G))f3 + y = 0, 

(G) - 4(n - 2)) ex + (2 + 2 (n ~ 2) - G)) f3 - y = 0. 
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This system has a unique solution (ct, 13, y) given by Eqs (24), which completes the 
proof. 
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